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NOVEL approach to analyze the robustness of a flight control

system (FCS) with respect to parametric uncertainties is
presented, which specifically applies to gliding vehicles in the termi-
nal phases of reentry flight. Robustness analyses are particularly
challenging for these systems. Their reference trajectories are appre-
ciably time-varying and encompass a broad variety of flight regimes.
Furthermore, significant uncertainties on some critical design param-
eters affect the vehicle model, most notably those related to the aero-
dynamic behavior [1].

Current practice in FCS robustness analysis for this kind of
application mainly relies on the theory of linear time-invariant
(LTI) systems. In this approach, the original nonlinear system is line-
arized around a limited number of representative time-varying
trajectories, including the nominal one. Then the well-known frozen-
time approach [2] is applied, yielding multiple LTI models. In this
way, classical stability margins [3] or more sophisticated LTI-based
robustness criteria, such as p analysis [4] and D-stability analyses
[5], can be evaluated. Recently, a Lyapunov-based criterion coupled
to interval analysis techniques [6] has been proposed for establishing
robustness of a FCS. This approach does not resort to linearization of
the system dynamics, but still requires the introduction of fictitious
equilibrium points obtained by a frozen-time approach. Even if the
flight experience demonstrated that frozen-time approaches are
indeed operative, they are widely recognized as inefficient [7]. In
fact, because the nominal trajectory may not be an equilibrium
trajectory for the system in offnominal conditions, frozen-time
analyses can provide only indicative, and often heavily conservative,
results.

To overcome such problems, further investigations are usually
performed to identify a limited set of worst-case combinations
of uncertain parameters to be used for FCS design refinement. In
this case, nonlinear simulations in specific offnominal conditions,
selected using sensitivity analysis and designer’s experience,
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represent the current practice. Optimization-based worst-case search
has also been proposed [8], which may disclose the mutual effects of
multiple uncertainties, but to a limited extent. In fact, the complexity
of reentry dynamics under multiple uncertainties implies that actual
worst cases relevant for FCS design refinement are difficult to
identify. In any case, worst-case analysis can select only a limited
number of test cases, hiding possible further causes of requirement
violations, thus driving wrong refinement strategies that would not
solve (or even worsen) FCS robustness problems.

Monte Carlo (MC) analysis is, in practice, the only tool that is
capable of investigating the combined effect of all uncertainties
with a reasonable effort. However, being only a verification tool,
when unsatisfactory robustness is discovered at this stage, the identi-
fication of its causes can require considerable postprocessing effort
[9]. This yields one of the major limitations of this approach: that is,
the limited support to the FCS design refinement when a requirement
violation occurs due to poor robustness. As a result, in these cases,
one is forced to iterate the design with scarce additional information.

The present paper contributes toward advancing the current
practice used in robustness analysis for FCS design refinement by
introducing a method that takes into account nonlinear effects of
multiple uncertainties over the whole trajectory, to be used before
robustness is finally assessed with MC analysis. The method delivers
feedback on the causes of requirement violation and adopts
robustness criteria directly linked to the original mission or system
requirements, such as those employed in MC analyses. The first
objective is achieved estimating the region of requirement compli-
ance in the space of the uncertain parameters. In this way, the ap-
proach provides an exhaustive coverage of the uncertainty’s effects
on the FCS robustness. To translate mission requirements into
robustness criteria over the whole trajectory, rather than at isolated
points as in frozen-time approaches, we make use of the practical
stability concept [10], which, to the authors’ knowledge, has never
been applied to robustness analyses of atmospheric reentry vehicles.

I

Let us assume to have a finite number p of parametric
uncertainties, with zero nominal value, and ranging in a bounded set
IT € 9i7. The time-varying dynamical system representing the
closed-loop augmented dynamics of an atmospheric reentry vehicle
can be written as in Eq. (1), where f: [0, 7] x R" x TT — R" and
g [0, T] x N x T — NR™:

Problem Statement

x=f(t.x,m) y=gtxmn) 1)

We refer to time-varying nominal trajectories rather than stationary
operating conditions, due to the possible lack of stationary
equilibrium points for the dynamics of an unpowered reentry vehicle
in steep gliding flight. The common approach to determine the
robustness of system (1) is to rearrange the system dynamics in terms
of variations with respect to the nominal trajectory, which becomes
an equilibrium point. This allows using robustness criteria based on
classical Lyapunov stability analysis. However, this approach cannot
always be used for analyzing system robustness to uncertainties,
because it is not guaranteed that the nominal trajectory is still
an equilibrium trajectory in the presence of nonzero uncertainties.
Such uncertainties, which not only cause perturbations in the
dynamics, but also modify the equilibrium trajectory, are known as
nonvanishing [11].

The nonlinear robustness criterion proposed in the present work is
based on the practical stability and/or finite time stability concepts
[10,12]. It requires only the inclusion of the system trajectories in a
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prespecified time-varying subset of the state space, the admissible-
solutions tube S (7), in face of bounded initial state displacements
and disturbances. As opposed to the classical Lyapunov stability
concept, it does not require the existence of any equilibrium point and
is independent of Lyapunov stability, in the sense that one neither
implies nor excludes the other. The practical stability criterion can
deal with nonvanishing uncertainties and systems defined in a finite
time domain. Moreover, it can handle robustness criteria directly
linked to the original mission or system requirements, which are
typically expressed in terms of trajectory tracking, thus identifying a
S 4 () surrounding the trajectory to be tracked.

For simplicity, we do not consider deviations in the initial state,
which is always taken equal to the nominal one, even though
the proposed approach can include such deviations with minor
modifications. The perturbed output trajectory y(t; ) is thus defined
as a trajectory of system (1) that starts at t = 0 and y(0) = ¥, under
the constant input 7. The robustness criterion is formulated as a
Boolean property P depending on the uncertainties, being true when
the criterion is satisfied:

_ftrue y(r;m) e S,(r) Virel0,T]
P(m) = {false Jrelo, T]? y(t; ) & Su(2) @

Willing to identify all the combinations of the uncertain parameters
under which the system exhibits unsatisfactory robustness, the
robustness analysis task is stated as determining the set [T, :=
{m € TI|P(r) = true}, consisting of all the uncertainties satisfying
the robustness criterion. In this setting, the robustness analysis task
can be reformulated as a practical stability analysis problem, as
follows.

Problem 1. Given system (1), a bounded set IT € 9R” such that
€ II, a time-varying compact set S,(f) (admissible-solutions
tube), and the property P, determine the set I1,.

III.  Solution Approach

To simplify the Problem 1 solution, let us assume the functions
f(-) and g(-) to be differentiable in ¢, x, and 7 over relevant domains;
IT to be a p—dimensional hyperrectangle; and the admissible-
solutions tube to be a w—dimensional hyperrectangle for all
t € [0, T]. Various techniques exist that can deal with the practical
stability analysis of a nonlinear dynamical system (see [12] for a
survey), with the prominent approaches based on a Lyapunov-type
analysis [10,12]. Nevertheless, in spite of a wide range of literature
on practical stability theoretical results, all the reported approaches
have significant drawbacks when considered from an applicability
perspective [13]. In this paper, an original approach is presented,
which consists of two phases. First, the nonlinear vehicle dynamics
are approximated within a prespecified error tolerance by their time-
varying linearizations in several offnominal conditions (approx-
imation phase). Then Problem 1 is solved on the linear time-varying
(LTV) systems obtained in the previous phase, explicitly taking into
account the approximation error (property-clearance phase).

A. Approximation

Let us consider a partition {I1,} of the uncertainty domain, made
of hyperrectangular blocks IT: that is, a collection of subsets
(blocks) that are both collectively exhaustive and mutually exclusive
with respect to the set being partitioned. We then define a collection
of LTV systems, each one approximating the nonlinear system in a
single block. In particular, each LTV system is obtained by applying
a first-order expansion of f(-) and g(-) around x? and 72, where ¥ is
the geometrical center of IT; and x? is the state trajectory under 9. To
quantify the error made in approximating the nonlinear system with
the LTV system, we use the weighted L, norm distance between the
nonlinear and linear trajectories. For each LTV system, and thus for
each block II; of the partition, we define an approximation error
function e;: T, — [0, oo as

ex(m) i= |ly(t; ) — ypu (8 ) |2 3)
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where y; () stands for the trajectory of the LTV system defined in
IT,. We search for an approximation of the nonlinear system that
introduces a prespecified bounded error. Equivalently, this can be
seen as searching for a partition {I1;};, in which ¢,(-) is below a
prespecified tolerance ¢ for all 7 in IT:

(e ¥ I € {05, Ig;%’iek(”) =€ (C))

Differentiability of f(-) and g(-) functions ensures that a partition
complying to Eq. (4) may always be found by using a partition of IT
with sufficiently small blocks. Following this fact, {I1,}, may be
obtained by repeatedly shrinking the blocks of the partition for which
the approximation error is higher than ¢. The partition refinement is
obtained iteratively by means of an isotropic bisection technique,
which splits a single p-dimensional hyperrectangle “father” set in 27
hyperrectangular subsets. These “sons” are generated by bisecting
each of the p one-dimensional intervals that define the father
hyperrectangle. At each iteration, the approximation error in each
block I1, is analyzed. Three cases are possible:

1) For max e, e, () < &, the error is below the tolerance and T1
is assigned to {I1;};: {I1;}; = {I1;}; U I1,.

2) For max,cp, e, () > & and vol(Il;) < 5, the approximation
error is higher than the tolerance and the volume of IT is smaller than
a predefined maximum resolution 1. In these blocks, the system
nonlinearities are so large as to preventits LTV approximation within
a small volume 1 and thus are not further considered for the
subsequent step of the algorithm. Such blocks are left undetermined
from the robustness analysis standpoint.

3) For max ., e, () > & and vol(I1;) > n, I, is partitioned into
2”7 sons and the process of evaluating the maximum approximation
error is repeated for each of them.

Applying the previous algorithm requires checking that the
distance between the nonlinear and linear trajectories under the same
7 is within the tolerance for all & € IT,. Only a few approaches exist
that allow relating the time responses of a nonlinear system to those
of its linearization by quantitative means (e.g., [14-16]), either
solving an optimization problem or providing bounds on the trajec-
tory distance that are typically exponentially increasing with time,
which limits their applicability. To tackle a wider class of problems,
alternative approaches have been proposed in [17,18], which esti-
mate the approximation error by means of heuristic methods.

In the present paper, we propose to evaluate the approximation
error by probabilistic methods. In particular, by fictitiously intro-
ducing a statistical description of the uncertain parameters in the
generic I1;, we accept the risk of the approximation error being
higher than the tolerance in a subset of IT; having small probability
measure. More precisely, we consider the nonlinear system to be well
approximated in IT, if the risk of e, (-) being higher than the error
tolerance is smaller than a threshold, which we take equal to 6%. By
employing the well-known one-sided Chebyshev inequality, the
threshold on the risk of ¢, (-) exceeding ¢ can be expressed in terms of
e,(+) mean and variance, yielding

I,;: E(ey) + 44/ Var(e,) < e = m%xek(rr) <e 5)
melly

To determine the mean and variance of e,(-), we use the scaled
unscented transformation (SUT) [19]. The SUT allows estimating the
mean and covariance of the nonlinear function e, (-) by propagating a
set of deterministically chosen points through e, (-) itself. These
points are chosen based on the mean and variance of the independent
variable: the uncertain parameters 7 in our case. We fictitiously
assume 7 to be uniformly distributed in IT, and set up the SUT
following the common practice in nonlinear Kalman filtering
applications (see [20] for more details).

B. Property Clearance

Once the {IT,}, partition has been determined, one can obtain
a solution to Problem 1 by formulating a similar problem on the
LTV systems that approximate the nonlinear one in {I1,}, . For such
LTV systems, the difference between any nonlinear and linear



J. GUIDANCE, VOL. 32, NO. 5:

trajectories under the same  is included in a closed ball B, C )"
with radius equal to ¢. It follows that the nonlinear solutions tube
is included in the Minkowski sum between the solution tube of its
linearization and the former ball. To exploit this result in achiev-
ing the problem’s solution, let us define a reduced admissible-
solutions tube, obtained by shrinking S, (-) of an amount equal to
B,: S, (1): S,,(1) ® B, = S,(t), V t € [0, T]. Consider now a modi-
fication of the P property, expressed in terms of S (-) and of the
linear trajectories corresponding to {I1,};:

s . Jtrue oy (w8 () Y re[0,T]
Pi(m) = {false 30T vam g S, ©

It can be easily proved that P’ implies P. Therefore, introducing a
region of admissible uncertainties analogous to IT, but based on P’,
as IT) := {m € II|P'(7) = true}, it follows that IT), < IT,.

1. Computation of I1/,

Because of the definition of IT), and P’, the determination of IT),
may be seen as a set inversion problem. This can be solved by
applying a set inversion algorithm, SIVIA (set inverter via interval
analysis), originally developed in the framework of interval analysis
[21] and recently also applied to reentry flight clearance [6]. The
SIVIA algorithm allows one to compute an inner and an outer
enclosure of IT),: T/, C IT), C IT). The algorithm is iterative and is
initially applied to the partition {I1};. To determine if a block IT,
belongs to the enclosures, it performs an inclusion test [P'](I1),
being true (false) only if P’ attains the same Boolean value over the
whole block. More precisely, the inner enclosure IT), is composed
of hyperrectangular blocks I1, for which the inclusion test is
true. Because IT), C IT}, such blocks are also members of IT).
Conversely, if it can be proved that [P'](I1;) = false, then the block
has an empty intersection with IT/,, and it is thus rejected. Otherwise,
no conclusion can be drawn based on the inclusion test, and the block
IT, is said to be undetermined. The latter is then bisected in 27 subsets
that are tested until their volume reaches the user-specified resolution
1. Thus, such undetermined minimum-volume blocks are deemed
small enough to be stored in the outer approximation IT) of IT/,.

2. Inclusion Test for SIVIA

The application of SIVIA requires defining an inclusion test,
which is typically obtained by applying interval analysis (e.g., in [6]).
However, interval computation is usually pessimistic, in the sense
that a block IT; may be deemed undetermined by an inclusion test
even if the property under analysis attains the same Boolean value
over the block itself. In the present context, we introduce a novel
inclusion test that exactly captures the blocks in which P’ is
uniformly true, and we also provide a condition that is sufficient for
P’ to be uniformly false.

The proposed inclusion test is based on a geometrical comparison
of §’,(¢) with the solutions tube corresponding to IT,. The latter is
determined by exploiting the preservation of convexity in LTV
trajectories under constant inputs. Let us consider a generic hyper-
rectangular IT, € {I1,},, which has 27 vertices, rr;,”), by definition.
Because the trajectory of an LTV system under a constant input 7 is
an affine transformation with respect to 7, any solution of the LTV
system under a generic m in Il is a convex combination of the

solutions under all the n,(c”). The knowledge of the 27 vertex trajec-

tories y; . (t; ni")) thus allows one to exactly determine the solutions
tube corresponding to IT,. By carrying out some algebra, omitted
here for brevity, one can formulate an inclusion test that requires
only a limited (and known a priori) number of linear trajectories,
which are obtained by numeric simulation. Denoting [ ]; as the ith row
of a matrix, and introducing the half-space representation of S, (¢) as
S, (1) = {y € ®e|Sky < SR(1)}, where S5 = (I,yxw» —Luxw)! and

SR [0, T) — M?»>!1, yields the following inclusion test:
[P(I;) :=true & V te€[0,T] Yv=1,...,2?7
Shyu(tm”) < SE@) 7
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[P(I1;) :=false =31 €[0,7] Fi=1,....2m:Vv=1,...,2°
(S5t m”) > [SE (D), (7b)

Applying the procedure discussed earlier, IT) is exactly
determined within a prefixed resolution, and, due to the properties
of the LTV systems defined on {I1,},, Problem 1 is solved conser-
vatively for the nonlinear system (1). Nonetheless, the amount of
conservativeness in estimating IT, is bounded, and it can be reduced
by decreasing the approximation error tolerance, at the price of a
higher computational load.

IV. Robustness Analysis of the Longitudinal
FTB1 Flight Control Law

The method is applied to evaluate the robustness of a candidate
FCS for the longitudinal dynamics of the FTB1 vehicle, developed as
part of the unmanned space vehicle research and technology devel-
opment program, managed by the Italian Aerospace Research Center
(CIRA) [22]. The program aim is to develop and flight-test key
technologies in the disciplines of guidance, navigation, and control;
aerodynamics; and structures related to the terminal reentry flight
phase of a winged vehicle. The first flight test, on which the present
paper focuses, is the first dropped transonic flight test, carried out in
February 2007 to investigate the transonic flight regime. The mission
profile begins with a release from a stratospheric balloon at an
altitude of 20 km, followed by a completely autonomous unpowered
gliding flight, designed to reach the transonic regime at a constant
angle of attack. The mission ends by deploying a parachute at a given
subsonic Mach number, to safely splash down in the Tyrrhenian Sea.
The analyses concern the robustness against three uncertainties in the
aerodynamic coefficients, which were determined to be the most
influential by means of conventional sensitivity analyses [18].

A purely longitudinal nonlinear flight dynamics model is
considered. The open-loop dynamics arise from well-known stan-
dard nonlinear longitudinal equations of motion. A detailed descrip-
tion of the FTB1 vehicle geometric and structural data can be found
in [23]. According to the complete aerodynamic data set, which is
presented in [24], the lift, drag, and pitching moment coefficients are
given as the sum of a nominal and an uncertain aliquot. The former is
predicted to be a nonlinear function of angle of attack oz, Mach num-
ber M, altitude h, pitch rate g, and symmetric deflection of
the elevons §,, which is the primary longitudinal control effector.
Concerning the uncertain aliquot, we consider bias uncertainties in
drag and pitching moment coefficients Cp, and C,,, respectively,
along with the uncertainty in the effect of §, on the pitching moment
coefficient C,,;s. The influence of uncertainties on the relevant
aerodynamic coefficient is modeled by means of nondimensional
scaling functions s(-) that depend on the Mach number. The resulting
aerodynamic coefficients functional dependencies are given in
Eqgs. (8), where the nom superscript denotes the nominal aerody-
namic coefficient:

C, =Cr™(a,M,h,q,3,) (8a)
Cp=CpE™a,M,h,8,) + spo(M) - mpg (8b)

Cm = Cl:nom(avah? stg) + SmO(M) o + Se : SmS(M) * s (SC)

After the first few seconds of the initial drop phase, a
proportional—integral-derivative algorithm augments the open-loop
vehicle dynamics. This is arranged in a cascade structure with feed-
back on pitch rate and angle of attack, with gains scheduled with
respect to the dynamic pressure. The augmented dynamics are
driven by a time-varying angle-of-attack command designed to fly
a constant angle of attack of 7 deg in the transonic region. With
the model of Eq. (8) and the feedback action of the elevons, the
longitudinal augmented vehicle dynamics take the form of Eq. (1)
[20]. Three robustness criteria are enforced, based on mission
requirements and FCS performance metrics. The FCS is required to
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Fig. 1 Admissible-region estimation.
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Fig. 2 Admissible-region validation by MC analysis, «,,; = 0.6.

track the reference angle-of-attack time history with, at most, a
2 deg error, as well as to avoid issuing commands that drive §,
outside the range [—25, 25] deg. The Mach number is limited from
above and below in the transonic region for complying to the mis-
sion objectives. These three robustness criteria naturally lend to a
time-varying hyperrectangular admissible-solutions tube. The ap-
proximation phase has been performed allowing for a maximum
distance between the nonlinear and linear trajectories of 0.27 deg in
@, 3 x 1073 in M, and 0.60 deg in §, to be achieved performing, at
most, 5 bisections of the uncertainties domain (i.e., n = 2~"). Nu-
merical computation of the Jacobians for linearization of the
nonlinear system in each IT; is carried out every second. With this
problem setting, a complete analysis requires ~12 min of execu-
tion time on a standard desktop PC equipped with a Pentium IV
2.4 GHz processor and 2 GB RAM. Approximation-phase results
point out that the nonlinear system is successfully approximated in
all IT within the allowed resolution. Figure 1 collects the property-
clearance results, in terms of the inner and outer enclosures of IT/,.

Validation of these results is performed by comparison with MC
evaluation of the robustness criterion in Eq. (2). Because a similar
behavior has been observed over the whole uncertainties’ domain,
data are shown only on a two-dimensional slice of Il. Figure 2
compares a slice of the admissible region at constant r,,5 = 0.6 with
all samples of a MC evaluation in which the systems does not meet
the robustness criterion. The method’s ability of identifying the
regions of unsatisfactory robustness is confirmed, as well as the
predicted conservatism in the results.

V. Conclusions

A novel approach to robustness analysis under parametric
uncertainty has been presented. Its capability of highlighting the
causes for requirement violations, being confident of having covered
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all possible combinations of the analyzed uncertain parameters,
makes the developed technique an effective tool for driving the FCS
refinement process. The practical stability property improves the
accuracy in robustness evaluation with respect to frozen-time ap-
proaches, thus reducing the risk of discovering additional effects
during robustness verification with Monte Carlo techniques. The
number of uncertain parameters that can be simultaneously analyzed
is the main concern of the method, due to the exponential increase in
the computational load. Its application so far suggests that when the
method is executed on a standard desktop computer, the maximum
dimension of manageable problems is on the order of 5. A prior
selection of the most influential uncertainties is thus necessary by
using conventional sensitivity analyses.
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